Week 3 Worksheet

Chem 11100-2: Section 33

Oct. 12, 2021

Remarks: The following information might be useful

Table 1: Electronegativity values						
	F	K	Si	Br	Р	Н
electronegativity	4.0	0.8	1.8	2.8	2.1	2.1

- 1. AlBr₃ is aluminum bromide
- 2. HBr is hydrogen bromide
- 3. PbI_2 is lead (II) iodide
- 4. $Pb(NO_3)_2$ is lead (II) nitrate
- 5. KI is potassium iodide
- 6. KNO_3 is potassium nitrate

Problem 1: Copper has an average atomic mass of 63.55 amu and is made of only 2 naturally occuring isotopes, Cu-63 and Cu-65. 69.1% of all Cu is Cu-63 with an exact mass of 62.93 amu.

- a) Calculate the exact mass of Cu-65 atom.
- b) Can we know which of the 2 isotopes is heavier? If so how?

Problem 2: Aluminum metal and hydrogen bromide gas react to form hydrogen gas and solid aluminum bromide.

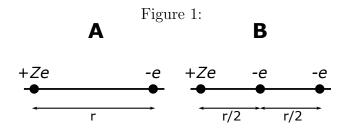
- a) Write a balanced chemical equation for this reaction.
- b) How many grams of aluminum metal would you need to fully react with 125g HBr?
- c) How many grams of hydrogen gas would be formed as a result of this reaction?
- d) A student ran the reaction but only got a 60.0% yield of H₂ gas. How many grams of H₂ gas did the student collect?

Problem 3: Why are the ionization energies of the alkali metals in the order:

 $\mathrm{Li} > \mathrm{Na} > \mathrm{K} > \mathrm{Rb}$

Problem 4: For the following pairs, pick the element with the higher ionization energy and explain your choice.

- a) Fe, Ru
- b) K, Br
- c) C, N
- d) Cl, F

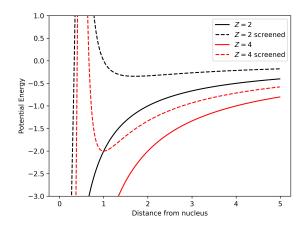

Problem 5: Explain the trends in bond lengths of the following ions:

	X-O [pm]
ClO_3^-	149
$\mathrm{BrO_3}^-$	165
$\mathrm{IO_3}^-$	181

Problem 6: Using the table of electronegativity values, determine whether each pair of atoms below would be expected to form a nonplar covalent, polar covalent, or ionic bond.

- a) F and K
- b) Si and Br
- c) P and H

Problem 7: Provide an explanation for why carbon monoxide has a greater bond-dissociation energy (1072 kJ/mol) than molecular nitrogen (945 kJ/mol).


Problem 8 (Bonus): Consider a stationary electron a distance r from the nucleus, with nuclear charge of +Ze (see Figure 1A).

- a) What is the potential energy for both the electron and nucleus in this configuration?
- b) Place another electron exactly in the middle of the original electron and nucleus so that it sits a distance $\frac{r}{2}$ between both the electron and the nucleus (Figure 1B). Determine the potential energies for all of the particles in this arrangement.

c) Consider the case now where Z = 2 (that is, 2 protons are in the nucleus). What is the potential energy for the furthest electron in both scenarios? Give a brief account of why they differ.

I have plotted U(x) for the outermost electron for the cases where Z = 2, 4 in the scenario where there is only 1 electron (A), and when there is an inner electron. This should illuminate how inner core electrons 'shield' the nucleus's attractive force on the valence/outer electrons.

Figure 2: These are the potential curves felt by the outermost electron. Solid lines indicate situation A and dashed lines indicate situation B from Figure 1

