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1. Permanent Dipole Moments

From before, we know that the permanent dipole moment is given by the first deriva-
tive of the energy with respect to an external electric field, evaluated with zero field.

µ0 = − ∂E

∂E

∣∣∣∣∣
E=0

(1)

The energy in the presence of an external electric field is given by

E (E) = E (0)− ⟨Ψ |µ̂|Ψ ⟩ ·E+ O
(
E2

)
(2)

Here, we define the full dipole moment operator µ̂ as

µ̂ = −r̂+
∑
A

ZARA (3)

where ZA is the charge of the Ath nuclei. Note that within the Born-Oppenheimer ap-
proximation, RA, which are the nuclear positions, are not promoted to operators, and that
term is evaluated as a constant (similar to the nuclear-nuclear repulsion term). Given the
energy expression above, we can write that our Hamiltonian (in the presence of an exter-
nal electric field) is given as

Ĥ(E) = Ĥ(0)− µ̂ ·E+ O
(
E2

)
(4)

Lets see how we can evaluate the dipole moment for both HF and truncated CI, illus-
trating the differences between the variational and non-variational methods.

1.1. Hartree-Fock Dipole Moments. Since the Hartree-Fock wave function is fully vari-
ational, we can use the Hellmann-Feynman theorem to simply evaluate the permanent
dipole moment. Hence, using ??, we have that P̂1 = −µ̂ and therefore,

µ0 = ⟨Ψ (0)|µ̂|Ψ (0)⟩ (5)

where |Ψ (0)⟩ is the Hartree-Fock ground state wave function. We can of course express
this in terms of the AO integrals and AO density matrix elements as

µ0 =− ⟨Ψ (0)|r̂|Ψ (0)⟩+
∑
A

ZARA

=−
∑
µν

Dµνrµν +
∑
A

ZARA

(6)

where
rµν =

〈
φµ

∣∣∣r̂∣∣∣φν

〉
(7)
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are just integrals over the spatial operator. These integrals are readily available in various
integral solver packages.

1.2. Truncated CI. Lets suppose that we have now a wave function |Ψ ⟩ from some trun-
cated CI calculation. For concreteness, suppose it is CISD. Now, |Ψ ⟩ is not fully vari-
ational since the orbitals have come from a HF calculation, whereas the CI coefficients
were variationally optimized. Another way of putting it is that when we start to change
the CI coefficients, the HF orbitals may not longer represent stationary points. Let C be
the CI coefficient parameters and κ to MO coefficients. Now,

∂E CISD

∂κ
, 0 (8)

but
∂E HF

∂κ
= 0 (9)

Furthermore,
∂E CISD

∂C
= 0 (10)

Now, because our energy is not fully-variational, we will need to calculate the response
of the wave function to the electric field. However, we can avoid this by using Lagranges
method of undetermined multipliers. We construct our Lagrangian as

L = E CISD + κ̄ · ∂E HF

∂κ
(11)

where κ̄ is our multiplier that we determine such that L is fully variational with respect
to both C, κ̄, and κ. Note that L is already stationary with respect to C and κ̄, so we only
have to make it stationary with respect to κ. If we begin, we see that

∂L

∂κ
=
∂E CISD

∂κ
+ κ̄ · ∂

2E HF

∂κ2 = 0 (12)

Firstly, ∂2E HF

∂κ2 is the Hessian of the HF energy with respect to MO parameters, which
we label as HHF

κ . We can therefore solve for κ̄ by solving the following coupled linear
equations

∂E CISD

∂κ
= −HHF

κ · κ̄ (13)

In general, HHF
κ is too large to invert, and so various algorithms exist to solve this set of

coupled equations. Additionally, if there are any redundancies with respect to the orbital
coefficients, this can cause singularities in the Hessian and make the equation undefined.
Therefore, it is imperative to remove any redundancies prior to solving.

Having solved for κ̄, the dipole moment can be calculated by

µ0 = − ∂L

∂E

∣∣∣∣∣
E=0

(14)

and using the Hellmann-Feynman theorem. This is valid since L is stationary with re-
spect to all variational parameters! We did not include the electric field explicitly in the
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construction of the Lagrangian, as in all steps that we care about, the field is evaluated at
0. Hence, it only formally shows up here at the end. That is

E CISD = ⟨Ψ |Ĥ − µ̂ ·E|Ψ ⟩ (15)

and
E HF = ⟨HF|Ĥ − µ̂ ·E|HF⟩ (16)

Thus,

µ0 = ⟨Ψ |µ̂|Ψ ⟩+ κ̄
∂
∂κ
⟨HF|µ̂|HF⟩ (17)

The first term is the unrelaxed CISD dipole moment. That is, it is the first-order per-
turbation theory dipole moment for CISD. Note that it is called the unrelaxed dipole
moment since it does not take into account fully the electron correlation. The second
term, with the Lagrange multiplers, gives a correction from this dipole moment such that
the entire dipole moment is called the relaxed CISD dipole moment.

I do admit that the equations above are not fully implementable as there are some de-
tails which are left out. Specifically, how does one take derivatives with respect to orbital
coefficients. This unfortunately, leads to all sort of issues with redundant parameters and
how one actually expresses the parameterization of the wave function which is beyond
the scope of this course. Instead, just know that the second term involves the HF RDM
elements and is relatively straightforward to compute.

The hardest step, of all, is the calculation of the Lagrange multipliers; and often, quan-
tum chemistry software packages will only report the unrelaxed CISD dipole moment.
There might be explicit keywords that can instead return the more correct/accurate re-
laxed dipole moment, but this is up to the individual software packages.

2. Nuclear Gradients

Now we turn to something that we use routinely, and for which, it is very important to
get correct. Incorrect nuclear gradients are ultimately not useful at all since they will lead
to wrong geometries during geometry optimizations, and fail to accurately evolve along
the potential energy surface during ab initio molecular dynamics. First, we will consider
the Hartree-Fock gradients and then consider how one would compute nuclear gradients
for a non-variational method.

Generally speaking, the nuclear gradient is given by

∂E

∂R
= ⟨Ψ |

∂Ĥ
∂R
|Ψ ⟩+ 2

〈
∂Ψ
∂R

∣∣∣∣∣Ĥ ∣∣∣∣∣Ψ 〉
(18)

Unlike in the dipole moment, the second term is not zero. This is because the orbitals
depend on the nuclear coordinates as they are centered on them. That is, if the nuclei are
moved an infinitesimal amount, the basis set has also changed and we must account for
this. However, if we were using a plane-wave basis (for a periodic calculation), then the
gradient would just be the normal Hellmann-Feynman term.

2.1. AnalyticHartree-FockNuclearGradients. Lets start with considering the restricted,
closed shell Hartree-Fock energy in terms of the AO basis functions as

E =
∑
µν

Dµνhµν +
1
2

∑
µντσ

DµνDτσ

(
gµντσ − gµστν

)
+V nuc (19)
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If one now takes the derivative with respect to some geometrical displacement (call it λ),
then

∂E

∂λ
=
∑
µν

(
∂Dµν

∂λ
hµν +Dµν

∂hµν
∂λ

)

+
1
2

∑
µντσ

(
∂Dµν

∂λ
Dτσ +Dµν

∂Dτσ

∂λ

)(
gµντσ − gµστν

)
+

1
2

∑
µντσ

DµνDτσ
∂
∂λ

(
gµντσ − gµστν

)
+
∂V nuc

∂λ

(20)

The third and fourth term can be collected since they are identical, removing the factor
of 1/2. Lets rearrange this a bit

∂E

∂λ
=
∑
µν

Dµν

∂hµν
∂λ

+
1
2

∑
µντσ

DµνDτσ
∂
∂λ

(
gµντσ − gµστν

)
+
∑
µν

∂Dµν

∂λ
hµν +

∑
µντσ

∂Dµν

∂λ
Dτσ

(
gµντσ − gµστν

)
+
∂V nuc

∂λ

(21)

The first two terms involve the derivative of the atomic integrals while the next two terms
involve derivatives of the density matrix times the Fock matrix! So we can simplify these
quantities as ∑

µν

∂Dµν

∂λ
Fµν (22)

The derivative of the nuclear repulsion term is trivial since it doesn’t involve any electron
coordinates (it can be done analytically very simply).

Lets now consider the derivatives of the integrals. The one-electron derivatives are
given as

∂hµν
∂λ

=
〈
∂φµ

∂λ

∣∣∣∣∣∣ĥ
∣∣∣∣∣∣φν

〉
+

〈
φµ

∣∣∣∂ĥ
∂λ

∣∣∣φν

〉
+

〈
φµ

∣∣∣∣∣ĥ∣∣∣∣∣∂φν

∂λ

〉
(23)

All three terms will be necessary since the core operator depends on the nuclei for the
nuclear-electron repulsion term. For the two-electron derivatives we have

∂gµντσ
∂λ

=
〈
∂φµ

∂λ
φτ

∣∣∣∣∣∣ĝ
∣∣∣∣∣∣φνφσ

〉
+

〈
φµ

∂φτ

∂λ

∣∣∣∣∣ĝ∣∣∣∣∣φνφσ

〉
+

〈
φµφτ

∣∣∣∣∣ĝ∣∣∣∣∣∂φν

∂λ
φσ

〉
+

〈
φµφτ

∣∣∣∣∣ĝ∣∣∣∣∣φν
∂φσ

∂λ

〉 (24)

Notice that there is no Hellmann-Feynman term for the two-electron integral since the
electron-repulsion operator does not depend on the nuclei at all. All of these integrals
can be readily evaluated using various techniques. This is especially true for Gaussian
orbitals, as the derivative with respect to the nuclear position will return a Gaussian with
just different angular components.
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Finally, lets deal with the derivatives of the density matrix. Recall that the density
matrix is built from the MO coefficients as

Dµν = 2
N/2∑
i

CµiCνi (25)

where the summation i is only over the double occupied orbitals (inactive). Then, if we
propagate the derivative, we have that

∂Dµν

∂λ
= 2

N/2∑
i

(
∂Cµi

∂λ
Cνi +Cµi

∂Cνi

∂λ

)
(26)

Therefore, we can write that∑
µν

∂Dµν

∂λ
Fµν = 2

∑
µν

N/2∑
i

(
∂Cµi

∂λ
FµνCνi +

∂Cνi

∂λ
FµνCµi

)
(27)

But now, recall that Cµi are determined through the HF condition

FC = SCε (28)

Substitution therefore leads to∑
µν

∂Dµν

∂λ
Fµν = 2

∑
µν

N/2∑
i

(
∂Cµi

∂λ
SµνεiCνi +

∂Cνi

∂λ
SµνεiCµi

)
(29)

Finally, we will deal with the derivatives of the MO coefficients by replacing them with
derivatives of the overlap matrix. We start by noting that the MOs are orthonormal such
that 〈

φi

∣∣∣φj

〉
=

∑
µν

CµiCνj

〈
φµ

∣∣∣φν

〉
=

∑
µν

CµiCνjSµν = δij (30)

This must hold for any geometry λ. Hence, the derivative must be zero such that we can
write

∂
〈
φi

∣∣∣φj

〉
∂λ

=
∑
µν

(
∂Cµi

∂λ
CνjSµν +Cµi

∂Cνj

∂λ
Sµν +CµiCνj

∂Sµν
∂λ

)
= 0 (31)

Rearranging leads to the following identity,

2
∑
µν

∂Cµi

∂λ
CνjSµν = −

∑
µν

CµiCνj

∂Sµν
∂λ

(32)

We can use this identity to replace the density matrix derivatives with derivatives of
the overlap matrix. In total, we find that the final derivative of the Hartree-Fock energy
is

∂E

∂λ
=
∑
µν

Dµν

∂hµν
∂λ

+
1
2

∑
µντσ

DµνDτσ
∂
∂λ

(
gµντσ − gµστν

)
+
∂V nuc

∂λ
−
∑
µν

N/2∑
i

CµiCνiεi
∂Sµν
∂λ

(33)



6 M. R. HENNEFARTH

In the literature, the final term is often called the renormalization or connection term
and quite frankly, is never well explained. Here, in first quantization, it is quite evident
where this term comes from: moving the nuclei moves the AO’s and thus the MO coef-
ficients depend on this. An alternative formulation would be to construct a Langragian
with the Hartree-Fock energy plus a constraint that the orbitals are orthonormal at all
geometries. The corresponding Lagrange multipliers would exactly recover this renor-
malization term. Similar terms appear in MC-SCF, CI, etc nuclear gradients, though they
are often computed using what is called the generalized Fock matrix.

2.2. Non-variational Nuclear Gradients. Lets now consider how to compute the nuclear
gradients for a method which is not fully variational with respect to all wave function
parameters. Similar to what we did in the dipole moment case, we will also form a La-
grangian and make it variational with respect to these wave function parameters, but
omit the basis set. We can deal with the basis set dependence explicitly, just like we did
in the HF case. If we take CISD as our example, the MO coefficients come from making
the HF energy stationary; hence, we will use the same Lagrangian as in the CISD dipole
moment (Eq. (11)).

L = E CISD + κ̄ · ∂E HF

∂κ
(34)

Again, we will know how to solve for the Lagrange multiplier κ̄ which comes from mak-
ing L stationary with respect to κ. Then, we can take the derivative with respect to our
nuclear coordinate λ as

∂L

∂λ
=
∂E CISD

∂λ
+ κ̄ · ∂

∂κ
∂E HF

∂λ
(35)

We already know how to take the derivative ∂E HF

∂λ , and one can then take a derivative with
respect to the MO coefficients. The first term, which is the derivative of the CISD energy
with respect to the nuclear displacement, will be evaluated similarly to the HF energy.
There will be an explicit contribution which contains the derivative integrals, and then a
renormalization term. It is beyond the scope of this text/class to write down what these
equations are explicitly, especially given they are much more concise/easier to derive in
the second-quantization formalism.

3. Wave Function Response and Second-Order Derivatives

Lets suppose that we wanted to calculate the nuclear hessian analytically. This will
require the response of the wave function to the external perturbation (nuclear coordinate
in this case) and therefore will require a lot more work. Lets consider it here for the HF
case.
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3.1. Hartree-Fock Nuclear Hessian. One can just take another derivative of the HF en-
ergy with respect to some nuclear coordinate λ2

∂2E HF

∂λ1∂λ2
=
∑
µν

Dµν

∂2hµν
∂λ1∂λ2

+
1
2

∑
µντσ

DµνDτσ
∂2

∂λ1∂λ2

(
gµντσ − gµστν

)
+
∂2V nuc

∂λ1∂λ2
−
∑
µν

N/2∑
i

CµiCνiεi
∂2Sµν
∂λ1∂λ2

+
∑
µν

∂Dµν

∂λ2

∂hµν
∂λ1

+
∑
µντσ

∂Dµν

∂λ2
Dτσ

∂
∂λ1

(
gµντσ − gµστν

)
−
∑
µν

∂
∂λ2

N/2∑
i

CµiCνiεi

∂Sµν∂λ1

(36)

We can evaluate the first 4 terms, as they correspond to derivatives of integrals. The
last 3 terms involve derivatives of the wave function (density matrix and MO energies).
We can obtained these values by solving the first-order coupled-perturbed Hartree-Fock
equations.


