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In this course, we are concerned with determining the energy and wave function for a
given molecule or molecular system. Given any molecule comprised of M nuclei and N
electrons, the time-independent Schrödinger equation takes the form

Ĥ |Ψ ⟩ = E |Ψ ⟩ (1)

where Ĥ is the Hamiltonian which describes the molecules/system of interest:
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Here, mA is the mass of nuclei A, ZA is the charge of nuclei A, and rij , riA, RAB is the
electron-electron distance, electron-nuclei distance, and nuclei-nuclei distance respec-
tively. Unfortunately, for any realistic system of interest (ie more than 1 electron, as we
will see), this becomes intractable to solve exactly. Instead we have to turn to using vari-
ous approximations to solve Eq. (1). The problem hence lies in, what approximations can
we make. And given an approximate solution, how can I get a better approximation?

We will first discuss the variational principle which guides in assess the quality of our
approximate solutions and how to get an optimal solution from a guess wave function.
Then, we will consider the Born-Oppenheimer approximation and when it is a valid ap-
proximation.

1. Brief Quantum Mechanics Review

The Hamiltonian is a Hermitian operator. We will assume for simplicity that it has at
most a countable number of eigenvectors (though, it is possible that Hamiltonians have a
continuum of eigenstates, consider the free particle). Lets enumerate the eigenstates |Φα⟩
and their corresponding energies Eα. Now, since Ĥ is Hermitian, the eigenvalues Eα are
real-valued so that we can order the states/energies such that

Eα ≤ Eα+1 (3)

We denote |Φ0⟩ the ground-state wave function and E0 the corresponding ground-state
energy. Furthermore, we know that the eigenvectors are orthonormal to one another:〈

Φα

∣∣∣Φβ〉 = δαβ (4)

Additionally, for any wave function |Ψ ⟩ in the Hilbert space defined by Ĥ can be ex-
panded as a linear combination of the eigenstates by inserting the resolution of the iden-
tity.

|Ψ ⟩ =
∑
α

cα |Φα⟩ (5)
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cα = ⟨Φα |Ψ ⟩ (6)

2. The Variational Principle

Given any approximate wave function for the ground state of our system, is there any
way to say how close the energy is to the true ground-state energy? The variational theo-
rem actually tells us that the energy of the approximate wave function is an upper-bound
for the true ground-state energy!

Theorem 1 (The Variational Principle). Given a normalized wave function |Ψ ⟩ that satis-
fies the boundary conditions, then

E0 ≤ ⟨Ψ |Ĥ |Ψ ⟩ (7)

The equality holds if and only if |Ψ ⟩ = |Φ0⟩.

Proof. Since |Ψ ⟩ is normalized, then we must have that∑
α

|cα |2 = 1 (8)

We therefore begin writing that

⟨Ψ |Ĥ |Ψ ⟩ =
∑
α

Eα |cα |2 (9)

Noting that E0 ≤ Eα for all α, then we must have that

E0 = E0

∑
α

|cα |2 ≤
∑
α

Eα |cα |2 (10)

Trivial to see that equality holds if and only if |Ψ ⟩ = |Φ0⟩. □

Any approximate wave function will always have an energy that is too high as com-
pared to the ground state. We can then improve our wave function by minimizing the
energy. In fact, we can write that the ground-state energy is the minimum energy of any
normalized wave function.

E0 = min
Ψ
⟨Ψ |Ĥ |Ψ ⟩ , where ⟨Ψ |Ψ ⟩ = 1 (11)

One, can of course show that for some unnormalized wave function
∣∣∣ψ〉

, the variational
principle can be written as 〈

ψ
∣∣∣Ĥ ∣∣∣ψ〉〈
ψ
∣∣∣ψ〉 ≥ E0 (12)

The variational parameter also tells us how to tune our wave function guesses to get
better approximate solutions to the ground-state energy and wave function. That is, given

some trial wave function which depends on some continuous parameters λ⃗,
∣∣∣∣Ψ (λ⃗)

〉
, then

our variational estimate to the true ground-state energy can be achieved by minimizing〈
Ψ (λ⃗)

∣∣∣∣Ĥ ∣∣∣∣Ψ (λ⃗)
〉

with respect to the parameters λ⃗.
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Example 2. Lets consider one of the simplest systems: a particle in a box of length L = 1.
If we assume the particle has a mass of 1 a.u., then the exact ground-state wave function
is

ψ0(x) =
√

2sin(πx) (13)

for x ∈ [0,1] and with an energy of

E0 =
π2

2
(14)

Lets imagine we didn’t know how to solve this problem. Based off of the boundary con-
ditions, we expect the wave function to be 0 at both ends of the box. A very simple guess
of the wave function is thus

ψ(x) = x(1− x) (15)

This has the correct behavior at x = 0,1. However, there is no parameter which we could
introduce to variationally optimize. One such parameter that we could add though is

ξ(x,α) = xα(1− x) (16)

Of course, we need to normalize this trial wave function, so we consider

⟨ξ |ξ⟩ =
∫ 1

0
dxx2α(1− x)2

=
∫ 1

0
dx

(
x2α − 2x2α+1 + x2α+2

)
=

1
2α + 1

− 2
2α + 2

+
1

2α + 3

=
2

(2α + 1)(2α + 2)(2α + 3)

(17)

If we then consider the expectation value of Ĥ , we have

⟨ξ |Ĥ |ξ⟩ =
∫ 1

0
dxxα(1− x)

(
−1

2
d2

dx2

)
(xα(1− x)) (18)

The second derivative of ξ(x,α) is given by

d2

dx2ξ(x,α) =
d

dx

(
αxα−1(1− x)− xα

)
=α(α − 1)xα−2(1− x)−αxα−1 −αxα−1

=
(
α2 −α

)
xα−2 −

(
α2 +α

)
xα−1

(19)

Inserting this into Eq. (18), we get

⟨ξ |Ĥ |ξ⟩ =− α
2

∫ 1

0
dx

(
(α − 1)x2α−2 − 2αx2α−1 + (α + 1)x2α

)
=− α

2

( α − 1
2α − 1

− 1 +
α + 1

2α + 1

)
=

α
2(2α − 1)(2α + 1)

(20)
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Hence, our energy for |ξ⟩ can be expressed as a function of α as

E (α) =
2α3 + 5α2 + 3α

4α − 2
(21)

Now, we find our optimal value of α when the derivative is zero, so we solve now

0 =
d

dα
E (α)

=

(
6α2 + 10α + 3

)
(4α − 2)− 4

(
2α3 + 5α2 + 3α

)
(4α − 2)2

=
16α3 + 8α2 − 20α − 6

16α2 − 16α + 4

(22)

We hence need to find the zeros to the polynomial equations

16α3 + 8α2 − 20α − 6 (23)

Numerically solving this, we find that the appropriate value of α is α0 = 1.043 (and we
check that the numerator is also not 0). We can then calculate our energy for the state
ξ(x,α0) by

E (α0) = 4.99 (24)

How does this compare to the exact result? Well the exact result is approximately 4.93
a.u., so we have an error of just a bit over 1%.

However, we should note that our variational wave function does not obey the sym-
metry of the system! If one computes ⟨ξ,α0|X̂ |ξ,α0⟩, we find the value to be 0.507 , 0.5.
That is, it slightly biases one side of the box over the other, when a priori this should not
be the case. In fact, if we were to enforce symmetry our our final wave function, it would
require that α = 1. We could of course relax this by considering the symmetry-adapted
trial wave function

ξ(x,α) = xα(1− xα) (25)

and solving. This would give the correct spatial symmetry for the wave function, though
it does not necessarily guarantee a more accurate energy! It therefore should be noted that
the variational principle does not converge to a solution which preserves the symmetry
of the Hamiltonian, this information has to be encoded within the trial wave function!

Once a bound has been obtained, we can estimate the quality by considering a trial
function with more parameters. If this produced a substantially lower upper bound, we
keep going. But, if we feel “resistance” and we cannot make any substantial improvement,
then we may begin to suspect that E0 is not too far below.

Example 3. Lets consider the hydrogen atom. The Hamiltonian takes the form

Ĥ = −1
2
∇2 − 1

r
(26)

We know that the ground state energy (in atomic units) is −1
2 and the ground state wave

function is

ψ(r) =
1
√
π
e−r (27)



APPROXIMATE SOLUTIONS TO THE MOLECULAR HAMILTONIAN 5

Lets assume we didn’t know this though. We would again suspect our ground-state wave
function is spherically symmetric and should decay as r→∞. If we want simple integrals,
the Gaussian is again a great choice.

We again can find the energy as a function of α as

E (α) =
3α
2
− 2

(2α
π

)1/2
(28)

Finding the optimial value of α, we get

α0 =
8

9π
(29)

E (α0) = − 4
3π
≈ −0.424 (30)

As we can see, we are not too far off from the actual ground-state energy! Only about 0.75
Hartree’s.

Example 4. Here, we are concerned with the ground state of He. Lets ignore nuclear
motion so that our Hamiltonian in the coordinate basis is

H(r1, r2) = −1
2

(
∇2

1 +∇2
2

)
− 2
r1
− 2
r2

+
1
r12

(31)

where r1, r2 are the radial coordinates of electron 1 and 2, and r12 is the radial sepa-
ration between the electrons. If we ignored electron-electron repulsion terms, then our
Hamiltonian is separable and we know the ground-state wave function (ignoring spin) is

ψ(r1,r2) = ψ100(r1)ψ100(r2) (32)

Here, ψ100(r1) is the Hydrogen-like ground-state wave function but with a slightly higher
charged nucleus (which depends on say Z).

ψ100(r) =
(
Z3

π

)1/2

e−Zr (33)

In the specific case of He, Z = 2. Hence, our wave function under the assumption the
electrons do not intereact is given by

ψ =
Z3

π
e−Z(r1+r2) (34)

Additionally, the energy for this crude approximation is given by

E = −4 a.u ≈ −108.8 eV (35)

The experimentally measured value is −78.6 eV for the He, hence we are fairly far off. In
general, omitting the electron-electron repulsion term is bad; however, if we keep it, we
cannot solve the problem analytically. Instead, lets turn to the variational principle to get
an upper bound. For a trial wave function, lets take our product form Eq. (34), but treat
Z now as a variable. The physical motivation for this is that the other electron screens
some of the nuclear charge for the other electron creating an effective Z that should be
less than 2. If we perform the calculation for the energy

E (Z) = −
(
4Z −Z2 − 5

8
Z
)

(36)
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Solving for the optimal Z, we find that it is not at 2, but instead at Z = 2 − 5
16 with a

corresponding energy of

E (2− 5
16

) ≈ −77.5 eV (37)

This is much closer to the real, experimentally determined answer! Furthermore, our
approximate answer lies above the true ground state (which is required by the variational
principle). Of course, one can try other trial functions with more and more parameters,
and they will get a little lower, but they will also meet the “resistance” to further lowering.

3. The Born-Oppenheimer Approximation

The full molecular Hamiltonian takes the form

Ĥmol = T̂ el + T̂ nuc + V̂ el + V̂ nuc + V̂ nuc,el (38)

where T̂ is the kinetic energy operator and V̂ describes the interaction between the var-
ious particles. Now, because the mass of nuclei are much heavier than electrons, they
move much slower. Hence, to a good approximation, as the nuclei are moving, the elec-
trons effectively see a static field of point charges since they are able to reorganize and
respond to a change in the nuclei much faster than the nuclei are moving. This is the
fundamental motivation for the Born-Oppenheimer approximation which allows us to
separate the nuclear and electronic degrees of freedom.

Under this assumption, we can write down the electronic Hamiltonian as just

Ĥel = T̂ el + V̂ nuc,el + V̂ el (39)

Note that V nuc is just a constant and so the eigenvectors for Ĥel do not depend on it, hence
we omit it when solving for the eigenvectors. Solutions to the electronic Hamiltonian take
the form

∣∣∣Φel;R
〉

Ĥel
∣∣∣Φel;R

〉
= E el{R}

∣∣∣Φel;R
〉

(40)

and they and their corresponding eigenvalues depend parametrically on the nuclear co-
ordinates. We will drop this implicit dependence on R for simplicity. The total energy is
then the sum of electronic and nuclear-nuclear interaction energy

E tot = E el +
∑
A,B

ZAZB
RAB

(41)

Here, we have that ZA is the charge of nuclei A and RAB is the internuclear distance
between atom A and B. It is then possible to solve for the nuclear degrees of freedom
in a similar way which gives rise to the nuclear Schrödinger equation. This gives rise
to vibrational, rotational, and translational energy. For this course, we focus sole on the
electronic problem and will drop the el subscripts unless necessary to distinguish.

4. Linear Variational Method: LCAO Basis Set Approach

While we have simplified the form of our Hamiltonian substantially by removing the
electron-nuclear correlation, we still have to deal with the electron-electron correlation.
Lets, for now, just ignore it, or only consider a single electron in some field of point
charges. The corresponding eigenfunctions we would call molecular orbitals (MO) and
the energy would be the orbital energy.



APPROXIMATE SOLUTIONS TO THE MOLECULAR HAMILTONIAN 7

Our question then is, how can we best approximate our single particle wave function
(or MO)? Well for a single nuclei and single electron, we can solve this exactly and get the
corresponding hydrogenic atomic orbitals: 1s, 2s, 2p, etc. Using chemical and physical
intuition, it makes sense then to approximate the molecular orbital as a linear combina-
tion of atomic orbitals.

We start with the following set of atomic orbitals
∣∣∣φµ〉. Each AO is centered on some

particular nuclei (and is the exact wave function for the corresponding electronic Hamil-
tonian). It should be obvious that 〈

φµ
∣∣∣φν〉 = Sµν , δµν (42)

generally speaking. Though of course for 2 AOs centered on the same nuclei, this is
necessarily the case. We therefore approximate our ground-state MO as∣∣∣φ〉

=
N∑
µ=1

cµ
∣∣∣φµ〉 (43)

Here, we call
∣∣∣φµ〉 our basis set, and in particular, this expansion is commonly known

as the linear combination of atomic orbitals (LCAO). Now, it should be seen that I have
limited our basis set to some N functions. Mathematically, we can always handle an
infinite (countable or uncountable) basis functions, but in practice we would have trouble
with even a countable infinite number of basis functions. Of course, as N → ∞, our
approximate wave function and energy will approach the basis set limit.

Now, our wave function should be normalized so that〈
φ
∣∣∣φ〉

=
∑
µν

c∗µSµνcν = 1 (44)

If we assume we have properly normalized our wave function, then the energy is given
by

E (c) =
〈
φ
∣∣∣Ĥ ∣∣∣φ〉

=
∑
µν

c∗µ
〈
φµ

∣∣∣Ĥ ∣∣∣φν〉cν
=
∑
µν

c∗µHµνcν
(45)

As can be seen, our free parameters are c. The variational method says then that our
best approximation to the energy and wave function is by setting

∀µ, ∂E

∂cµ
= 0 (46)

However, we must optimize with the constraint that
〈
φ
∣∣∣φ〉

= 1! Therefore, we must use
Lagrange’s method of Undetermined multipliers. We proceed by defining the Lagrangian
as

L (c) = E (c)−E
(〈
φ
∣∣∣φ〉
− 1

)
(47)

Here E is the Lagrange multiplier term which is allowed to vary freely. Notice that we
have essentially added 0 to the energy equation! It is known then that the minimum of
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E (c) given the constraint
〈
φ
∣∣∣φ〉

= 1 is achieved at the same minimum as L (c). Hence,
taking the derivative with respect to cη we obtain

∂L (c)
∂cη

=
∂
∂cη

∑
µν

c∗µHµνcν −E
∂
∂cη

∑
µν

c∗µSµνcν

=
∑
ν

Hηνcν +
∑
µ

c∗µHµη −E

∑
ν

Sηνcν +
∑
µ

c∗µSµη


=2

∑
ν

Hηνcν − 2E
∑
ν

Sηνcν

(48)

Hence, we are optimized when, ∀cη ,∑
ν

Hηνcν = E
∑
ν

Sηνcν (49)

and this can be rewritten in matrix form as

Hc = ESc (50)

Of course though, this will have N possible solutions ci yielding N different wave func-
tions

∣∣∣φi〉, and N different E which we label Ei . If we take Eq. (49) and multiply by c∗iµ on
the right, we obtain ∑

µν

c∗iµHµνciν = Ei
∑
µν

c∗iµSµνciν (51)

But this simplifies to 〈
φi

∣∣∣Ĥ ∣∣∣φi〉 = Ei (52)
So the eigenvalues are exactly our approximate energies! So in one shot, we have found
the first N approximate eigenstates given the basis set

∣∣∣φµ〉.
Essentially then, to find the optimal one-electron wave function for a molecular system,

we
(1) Select a set of N basis functions.
(2) For that set of basis functions, determine all values of Hµν and Sµν .
(3) Solve the generalized eigenvalue equations of Eq. (50) to get the basis set coeffi-

cients ciµ.


