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1. Atomic Orbitals Basis Sets

In general, our molecular orbitals
∣∣∣φp〉 are expanded in terms of some atomic orbitals∣∣∣φµ〉. One could use some atomic orbitals which are solutions to the single nuclei-single

electron problem. However, this would only be qualitatively correct. The single-particle
orbitals would not have any electron-electron interaction in them. Instead, what if each
atomic orbital is approximated as some linear combination of Gaussian function? This
would on one hand yield nice integrals which we could compute fast, and allow us some
flexibility in building our basis set. The reason we also choose a linear combination of
Gaussians is that for higher AO’s, like the 2s, we have a radial node which could never
properly be described by a single Gaussian. In general, our AO’s are typically contracted
Gaussian-type orbitals and take the form

φµ(r) = Ylm(θ,ϕ)

r l n∑
i=1

ciN (l,αi)e
−αir2

 (1)

In the above, n is the number of contracted primitive Gaussians, Ylm is a spherical har-
monic, ci is the contraction coefficient, and αi is the corresponding exponent. N is just
a normalization factor such that

〈
φµ

∣∣∣φµ〉 = 1. For a given basis set, all of these parame-
ters are fixed such that one only is trying to optimize instead the transformation matrix
from AOs to MOs, C. One can of course explore the various basis sets used in quantum
chemistry at the Basis Set Exchange [3, 1, 4].

Example 1 (STO-3G Basis for Hydrogen). From the Basis Set Exchange, one can see that
the STO-3G basis set [2] for a hydrogen atom is given by Table 1. We form a single
1s orbital from three primitive Gaussian-type orbitals. The contraction coefficients and
exponential terms α can be plugged into Eq. (1).

The one drawback of using Gaussian type integrals is that they do not correctly model
the cusp-condition at the nuclei. Of course, contraction scheme can only approximately
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Table 1. STO-3G Basis Set for Hydrogen. One contracted Gaussian-type
orbital is formed from three primitive Gaussian-type orbitals.

Orbital α Contraction Coefficient

1s 3.4252509140 0.1543289673
0.6239137298 0.5353281423
0.1688554040 0.4446345422
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model this, and the Gaussian-type orbitals will always be differentiable at r = 0, unlike
a Slater type orbital (e−ζr). Slater-type orbitals would better approximate the cusp con-
dition; however, they are typically never used in practice due to the increase in cost to
evaluate the integrals.

1.0.1. Building AO Basis Sets. To build an AO basis set for a particular atom, one consid-
ers some number of contractions for each orbital. Lets take the carbon atom. For a smaller
basis set, we might only consider defining a 1s, 2s, 2px, 2py , and 2pz atomic orbital since
there are no electrons in the d-shell. One would then determine how each orbital is ex-
panded in terms of some number of primitive Gaussian-type orbitals. Then, they would
(using techniques later in the course), optimize the energy with respect to the parameters
(typically αi and ci) for each orbital. However, as it customary, all orbitals of the same
shell typically will have the same αi and only vary in their contraction coefficients.

In essence, the basis sets are essentially a variational optimization of the single atom
atomic orbitals given some trial wave function. One could always include more orbitals
(have multiple orbitals for each valence orbital), or include higher principle orbitals (3s,
3p for carbon for example). This would yield a different basis set, and probably a more
accurate trial wave function for which to build off of.

1.0.2. Understanding Basis Set Names. The simples basis sets are those of the STO-nG
type. The STO stands for Slater Type Orbital and the nG describes the number of Gaus-
sians used. For example, the STO-3G is the minimal basis for which each atomic orbitals
is described by a contraction of 3 primitive Gaussians. In the case of Hydrogen (Table 1),
we see that the 1s orbital is described by a contraction of 3 primitive Gaussians. Similarly
for the carbon atom: the 1s, 2s, 2px, 2py , and 2pz are described by 3 primitive type Gaus-
sians. If one used instead the STO-4G, then then all atomic orbitals would be described
by a contraction of 4 Gaussians! This should get us a step (albeit a small step) closer to
the basis set limit result!

In practice one rarely uses the STO-nG basis sets anymore for production calculations
since they are so primitive. Instead, chemists have an absolute plethora of basis sets to
choose from. One particularly set of basis sets are called the Pople basis sets. These
are typically denoted as X − YZG basis sets. Here, X denotes the number of primitive
Gaussians describing the core orbitals. The Y and Z indicate that the valence orbitals are
modeled by 2 basis functions each. The first is composed of Y primitive Gaussians, and
the second is composed of Z primitive Gaussians. In this particular case, we call this a
split-valence double-zeta basis set. One could of course model the valence orbitals with
more basis functions in a split-valence triple- or split-valence quadruple-zeta (or even
higher) denoted as X −YZWG and X −YZWVG respectively.

Lets take the 3 − 21G basis set as an example; and furthermore, lets look at both hy-
drogen and carbon again (Table 2). The hydrogen has no core orbitals, only the valence
1s orbitals. So we model it using 2 contracted Gaussians, the first being comprised of 2
primitives and the other comprised of 1 primitive. For the carbon atom, a similar story
is for the valence orbitals (note that the α value is the same for both 2s and 2p!). The 1s
orbitals is the core orbital for carbon and this is described by a contraction of 3 primitive
type Gaussians.

One could of course go to larger and larger basis sets, 4-31G, 6-31G, 6-311G, etc. And
one could also begin to add some flexibility to our basis sets with the addition of polarized
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Table 2. 3-21G basis set for hydrogen and carbon. Note that the core
orbital of carbon is modeled by a contraction of 3 Gaussians. The valence
orbitals are modeled by 2 sets of contracted Gaussians, the first is comprised
of 2 primitives and the second of just 1 primitive.

Atom Orbital α Contraction Coefficient

H 1s 5.4471780000 0.1562849787
0.8245472400 0.9046908767

1s 0.1831915800 1.0000000000

C 1s 172.2560000000 0.0617669073
25.9109000000 0.3587940429

5.5333500000 0.7007130837
2s 3.6649800000 -0.3958951621

0.7705450000 1.2158343560
2p 3.6649800000 0.2364599466

0.7705450000 0.8606188057
2s 0.1958570000 1.0000000000
2p 0.1958570000 1.0000000000

and diffuse functions (denoted as * and + respectively). The diffuse functions are added to
better model the tail portion of the atomic orbital (far away from the nucleus). Polarized
functions add the next angular momentum to the given atom to give it more flexibility in
describing the molecular orbital. For the case of carbon, the polarized functions would
be the d orbitals.

2. Many-Particle Wave Functions

Up until this point, we have really only discussed single particle wave functions. If we
want to be able to solve the electronic Hamiltonian for many-electron systems, we have
to understand the formalism of quantum mechanics with multiple particles. Fortunately,
the machinary is not too dis-similar from a single particle system; however, some care
has to be taken with regards to particles with spin.

2.1. SystemswithN Degrees of Freedom. Lets consider a system withN particles. Clas-
sically, we could describe this using (xi ,pi) for i = 1, . . .N . Just like we would do with a
single particle, we can quantize this system by promoting the variables to quantum oper-
ators X̂i , P̂i such that they obey the canonical commutation relations:[

X̂i , P̂j
]

= iℏδij (2a)[
X̂i , X̂j

]
= 0 (2b)[

P̂i , P̂j
]

= 0 (2c)

Since the position operators commute, we can find a simultaneous eigenbasis

|x1 . . .xN ⟩ = |x1⟩ ⊗ . . .⊗ |xN ⟩ (3)
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with normalization 〈
x′1 . . .x

′
N

∣∣∣x1 . . .xN
〉

=
N∏
i=1

δ(xi − x′i) (4)

The position-space wave function is hence

Ψ (x1, . . . ,xN ) = ⟨x1 . . .xN |Ψ ⟩ (5)

We may also interpret
P (x1, . . .xN ) = |⟨x1 . . .dN |Ψ ⟩|2 (6)

to be the absolute probability density for catching particle i near xi .
In general, we identify an N -particle wave function |Ψ ⟩ in the product space

N⊗
i=1

Hi (7)

where Hi is the Hilbert space for the ith particle. Additionally, we can promote single
particle operators Ôi to this product space by

Ôi → 11 ⊗ . . .⊗1i−1 ⊗ Ôi ⊗1i+1 ⊗ . . .⊗1N (8)

2.1.1. Two-Particle State Vector. We consider a 2-particle system. The state vector of this
system must be some element of

H = H1 ⊗H2 (9)
The Hamiltonian will take the form

Ĥ =
P̂2

1

2m1
+

P̂2
2

2m2
+V

(
X̂1, X̂2

)
(10)

There are two classes of problems:
(1) Ĥ is separable, ie.,

Ĥ =
P̂2

1

2m1
+V1

(
X̂1

)
+

P̂2
2

2m2
+V2

(
X̂2

)
= Ĥ1 + Ĥ2 (11)

(2) Ĥ is not separable, ie

V (X̂1, X̂2) , V1

(
X̂1

)
+V2

(
X̂2

)
(12)

In the first case, the particles both interact with some external potential but not with
each other. The second case has no restriction and the many electron problem is none-
separable. While the none separable Hamiltonians seem hopelessly hard, lets at least
consider the separable Hamiltonians. Now, since

[
Ĥ1, Ĥ2

]
= 0, we can find a simultaneous

eigenbasis which we will call |E1⟩ |E2⟩.
Ĥ1 |E1⟩ = E1 |E1⟩ (13)

Ĥ2 |E2⟩ = E2 |E2⟩ (14)
This state corresponds to particle 1 being in energy eigenstate |E1⟩ and particle 2 being in
energy eigenstate |E2⟩. Furthermore, we can see that

Ĥ |E1⟩ |E2⟩ =
(
Ĥ1 + Ĥ2

)
|E1⟩ |E2⟩ = (E1 +E2) |E1⟩ |E2⟩ (15)

and hence they are the eigenstates of Ĥ .
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What do they look like in the coordinate representation? Well, we have that

ψE(x1,x2) = ⟨x1,x2|E1,E2⟩ = ψE1
(x1)ψE2

(x2) (16)

And in fact, ψEi are the solutions to the single particle Hamiltonian!

3. Spin

In quantum mechanics, particles are know to have an additional “orientation”, or an
intrinsic property, known as spin. In general, if given a rotation, Ω, we typically assume
only the particles position will undergo a rotation as

Ψ (x)→ Ψ (Ωx) (17)

However, it is also possible that the wave function also transforms.

Ψ (x)→ΩΨ (Ωx) (18)

If so, we say that the particle for which it describes has spin, otherwise we say it doesn’t
have spin. This is in general analogous to the vector potential in classical electricity and
magnetism. Here, we only review some elementary aspects of spin for a single particle.
A detailed discussion on spin and angular momentum can be found elsewhere. Then, we
discuss spin for multi-particle wave functions as well as spin-statistics.

3.1. Brief Review of Spin for Single Particles. Particles can have spin 0, 1
2 ,1,

3
2 , . . .. There

are also 3 spin operators, Ŝx, Ŝy , Ŝz which satisfy the angular momentum algebra[
Ŝi , Ŝj

]
= ϵijkiℏŜk (19)[

Ŝi , Ŝ
2
]

= 0 (20)

Ŝ2 =
∑
i

Ŝ2
i (21)

Because of the last relation, we can find an simultaneous eigenbasis of Ŝ2 and only one
Ŝi , which we typically take to be Ŝz. We label these states |s,ms⟩ such that

Ŝ2 |s,ms⟩ = s(s+ 1)ℏ2 |s,ms⟩ (22)

Ŝz |s,ms⟩ =msℏ |s,ms⟩ (23)

Recall that ms can be −s,−s + 1, . . . s − 1, s (2s + 1 possible values). Finally, there are some
particular interesting operators Ŝ± which raise and lower ms by 1.

Ŝ± = Ŝx ± iŜy (24)

Ŝ± |s,ms⟩ = c±(s,ms) |s,ms ± 1⟩ (25)

c±(s,ms) = ℏ

√
(s∓ms)(s ±ms + 1) (26)

If ms ± 1 is outside the allowed range, the result is zero. Using the ladder operators, we
can write Ŝ2 as

Ŝ2 =Ŝ+Ŝ− − Ŝz + Ŝ2
z

=Ŝ−Ŝ+ + Ŝz + Ŝ2
z

(27)
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Example 2. The spin-1/2 particle is particularly interesting for a variety of reasons. For
us, it is because electrons are spin 1/2 particles. We often denote states as

|α⟩ = |↑
〉

=
∣∣∣∣∣12 , 12〉 (28a)∣∣∣β〉 = |↓

〉
=
∣∣∣∣∣12 ,−1

2

〉
(28b)

Furthermore, the operators Ŝi , expressed in this basis, are the same as the Pauli matrices
(σi) multiplied by ℏ

2 .

Ŝi =
ℏ

2
σi (29)

σx =
[
0 1
1 0

]
(30a)

σy =
[
0 −i
i 0

]
(30b)

σz =
[
1 0
0 −1

]
(30c)

Lastly, we denote the spin coordinate of a particle as ω such that x = (r,ω). Hence, for
spin 1/2 particles,

⟨ω|α⟩ = α(ω) (31)

3.2. Spin inMany-Electron Systems. For a wave function which describes multiple par-
ticles, there are analogous spin operators Ŝi which are defined as

Ŝz =
N∑
j

Ŝz(j) (32)

and equivalently for the other 2 spin operators. Hence, it is just a sum of 1-electron
operators! In the specific case of Ŝz, for some N spin 1/2 particles, it is fairly simple to
see that each term in the summation either contributes ±ℏ2 . Hence, the total mz value is
given as the difference between spin up and spin down particles multiplied by ℏ

2 .
The total Ŝ 2 operator is much more complicated since it is not simply a sum of 1-

electron operators!

Ŝ 2 ,
N∑
j

Ŝ2(j) (33)

Instead, we can use similar relations as in the single particle case to write that

Ŝ 2 =Ŝ+Ŝ− − Ŝz + Ŝ 2
z

=Ŝ−Ŝ+ + Ŝz + Ŝ 2
z

(34)

As an example, lets consider 2 spin 1/2 particles. We know that all possible states in
are given by

|↑↑
〉
, |↑↓

〉
, |↓↑

〉
, |↓↓

〉
(35)
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And we can label them as eigenstates of Ŝz(i) and Ŝ2(i). However, it is much more conve-
nient to work in the basis of eigenstates of Ŝz and Ŝ 2. Now, it is clear that |↑↑

〉
has a m of

1 since it is the sum of m1 +m2. We can further identify then that it does not belong so a
half-integer spin irrep, but must belong to either spin 1, spin 2, or higher. It is impossible
for us to get a total spin of more than 1 since 1/2 + 1/2 = 1, hence, this belongs to the spin
1 irrep. In particular, it is also a state of total spin s = 1! So that, we could label

|↑↑
〉

= |1,1⟩ (36)

Similarly, we can identify
|↓↓

〉
= |1,−1⟩ (37)

And finally, we can find the third state in the singlet irrep by applying Ŝ− to |↑↑
〉
.

Ŝ− = Ŝ−(1) + Ŝ−(2) (38)

Ŝ− |1,1⟩ =
(
Ŝ−(1) + Ŝ−(2)

)
|↑↑

〉
√

2 |1,0⟩ =
√

1 |↓↑
〉

+
√

1 |↑↓
〉

|1,0⟩ =
1
√

2
(|↓↑

〉
+ |↑↓

〉
)

(39)

For the last state, we need to find the state orthogonal to these 3 states, and we can find
this by noting that

|0,0⟩ =
1
√

2
(|↓↑

〉
− |↑↓

〉
) (40)

This gives us the basis for the 2 spin-1/2 particles which are eigenstates of total spin Ŝ 2

and Ŝz. Note, the algebra works out such that we started with (S1 = 1/2)⊗ (S2 = 1/2), a 4-
dimension space. However, we moved to the (S = 1)⊕ (S = 0) (also 4-dimensional) vector
space representation. In general, one can always go from the single particle spin/angular
momentum basis to the total wave function spin/angular momentum basis using the
Clebsh-Gordon coefficients. It is not particularly instructive to list these out, or their
recursion relations, but it is important to know that they exist and they tell us how to go
between these two representations.

3.3. Addition of Angular Momenta. What we have just seen in the prior section is an
example of addition of angular momenta (recall that spin is just an intrinsic angular
momentum). Lets try to generalize this a bit. Lets suppose that we have 2 Ĵ operators
(they can be L̂ or Ŝ, but for the context of this course, we can take them to be 2 spin
operators for 2 particles), labeled Ĵ1 and Ĵ2. Now, each operator satisfies the angular
momenta algebra and, from before commutes with each other[

Ĵ1, Ĵ2

]
= 0 (41)

The total angular momenta (or spin) for the system is given by Ĵ = Ĵ1 + Ĵ2, and this also
satisfies the correct angular momenta algebra[

Ĵi , Ĵj
]

= iℏϵijk Ĵk (42)

Now, because of the commutation relations, we can form a basis either with

Ĵ2
1 , Ĵ

2
2 , Ĵ1z, Ĵ2z (43)
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or
Ĵ2, Ĵz, Ĵ

2
1 , Ĵ

2
2 (44)

In the former case, we can label the states using j1, j2,m1,m2 such that

Ĵ2
i |j1, j2,m1,m2

〉
= ℏ

2ji(ji + 1) |j1, j2,m1,m2
〉

(45)

Ĵiz |j1, j2,m1,m2
〉

= ℏmi |j1, j2,m1,m2
〉

(46)

For the latter basis, we have to first observe that
[
Ĵ2, Ĵ2

i

]
= 0. We can write Ĵ2 as

Ĵ2 = Ĵ2
1 + Ĵ2

2 + 2Ĵ1z Ĵ2z + Ĵ1+Ĵ2− + Ĵ1−Ĵ2+ (47)

Since each term commutes with Ĵ2
i , then it must commute with Ĵ2. So our alternative

basis can be labeled by j,m,j1, j2 with

Ĵ2
i |j,m,j1, j2

〉
= ℏ

2ji(ji + 1) |j,m,j1, j2
〉

(48)

Ĵ2 |j,m,j1, j2
〉

= ℏ
2j(j + 1) |j,m,j1, j2

〉
(49)

There must exist a unitary matrix which relates these 2 basis!

|j,m,j1, j2
〉

=
∑
m1m2

|j1, j2,m1,m2
〉〈
j1, j2,m1,m2|j,m,j1, j2

〉
(50)

In the summation we have what are called the Clebsch-Gordan coefficients:〈
j1, j2,m1,m2|j,m,j1, j2

〉
(51)

Lets now discuss some properties:
(1) They vanish if m ,m1 +m2
(2) They vanish unless |j1 − j2| ≤ j ≤ j1 + j2

Ah! This tells us which spin states can be formed by combining particles of different
spin! If we revisit our trusty 2 spin-1/2 particles, we see that j1 + j2 = 1 and |j1 − j2| = 0.
So, j = 0,1 as we determined! The first condition on m makes sense, essentially the m
value can be taken as the sum of the individual spin components.

I will briefly mention that there also exists recursion relations for the Clebsh-Gordon
coefficients, and ways to actually compute them, but they are not particularly interesting
and can be found elsewhere. In fact, there is probably a website which can compute them
for you!

Example 3 (Spin 1 and Spin 1/2 Particle). Suppose we had 2 particles, one of spin 1 and
the other of spin 1

2 . We want to know write our Hilbert space in terms of the irreducible
representations of the total spin operator. That is, determine what are the possible basis
stats (|j,m

〉
). We know that the underlying Hilbert space is given as

1⊗ 1
2

(52)

which has a total dimension of 3 × 2 = 6. Now, from the Clebsch-Gordan coefficient
properties, we know that |j1 − j2| ≤ j ≤ j1 + j2 and hence

1
2
≤ j ≤ 3

2
(53)

So, j can be either 1
2 ,1, or 3

2 . We know that 3
2 is possible since from the m values, 1 + 1/2 =

3/2. And this subspace is of dimension 4. So the other subspace needs to have a dimension
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of less than 2. Ah, this excludes the spin 1 subspace which has dimension 3, and leaves
us instead with spin 1

2 subspace. So we can say that (pictorially)

1⊗ 1
2
�

3
2
⊕ 1

2
(54)

And indeed the dimensionality works out. This means that for a system with a spin
1 particle and a spin 1/2 particle, the allowed total spin is 3

2 and 1
2 , with the normal

degeneracy (4 for 3
2 and 2 for 1

2 ).

We will see later that since the electronic Hamiltonian (neglecting relativistic effects/spin-
orbit coupling) commutes with the total spin operator, so our final eigenstates can be
represented in terms of |j,m

〉
. Thus, our trial wave functions should already be expressed

in the basis of j,m quantum numbers rather than the single particle m1, m2 basis so that
our final variational solutions has the correct spin symmetry! Recall that the variational
condition does not enforce symmetries that are not present in your trial wave function,
and so we must embed them a priori.
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