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1. Spin Statistics Relations

Lets consider some system of isolated particles. Classically, we could follow the tra-
jectories of identical particles such that the exchange of particles results in physically
equivalent configuration. In quantum mechanics; however, particles are truly indistin-
guishable. That is to say, if we were to try and follow the path of 2 particles, labeled A and
B, but then lost track of them for a split second, we would have no idea which particle
was A and which was B (Fig. 1)!

That means that given the following states |k′⟩ and |k′′⟩, the states∣∣∣k′〉 ∣∣∣k′′〉 and
∣∣∣k′′〉 ∣∣∣k′〉 (1)

are 2 distinct states only if the particles are distinguishable. However, for all normalized
states

c1

∣∣∣k′〉 ∣∣∣k′′〉+ c2

∣∣∣k′′〉 ∣∣∣k′〉 (2)

they all give the same eigenvalues when a measurement is made. This is called exchange
degeneracy. Lets define a permutation operator P̂12 such that

P̂12

∣∣∣k′〉 ∣∣∣k′′〉 =
∣∣∣k′′〉 ∣∣∣k′〉 (3)

and this can be generalized for any particles i, j of P̂ij .

P̂ij

∣∣∣k1
〉
. . .

∣∣∣ki〉 . . . ∣∣∣kj〉 . . . = ∣∣∣k1
〉
. . .

∣∣∣kj〉 . . . ∣∣∣ki〉 . . . (4)

Note that
P̂2
ij = 1 (5)

So that P̂ij = P̂−1
ij . Hence the eigenvalues of P̂ij is ±1. We can also discuss its action on

operators. Suppose we have some observable Ô1 which acts on particle 1. Then

P̂12Ô1P̂
−1
12 = Ô2 (6)
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Figure 1. Indistinguishably of particles A and B. If we were to follow there
trajectories and our vision was obscured slightly, we would have no idea if
particle A was on the top or not.
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We can see this via (where α are some eigenstates of the operator)

P̂12Ô1P̂
−1
12

∣∣∣α′〉 ∣∣∣α′′〉 =P̂12Ô1

∣∣∣α′′〉 ∣∣∣α′〉
=α′′

∣∣∣α′〉 ∣∣∣α′′〉 (7)

So P̂12Ô1P̂
−1
12 acts like Ô2.

Considering the 2 particle case. We can see that the eigenstates of P̂12 are

1
√

2

(∣∣∣k′〉 ∣∣∣k′′〉± ∣∣∣k′′〉 ∣∣∣k′〉) (8)

Where the + goes has an eigenvalue of +1 and − has an eigenvalue of −1. Finally, any
permutation P̂ijk where i→ j→ k→ i can be expressed as a product of P̂ij . For example,

P̂123 = P̂12P̂13 (9)

Lets project the operator into a symmetric and antisymmetric contribution

Ŝ12 =
1
2

(
1+ P̂12

)
(10)

Â12 =
1
2

(
1− P̂12

)
(11)

These operators, when acting on general linear combinations of |k′⟩ |k′′⟩ result in neces-
sarily symmetric/antisymmetric states.

Ŝ12

(
c1

∣∣∣k′〉 ∣∣∣k′′〉+ c2

∣∣∣k′′〉 ∣∣∣k′〉) =
1
2

(
c1

∣∣∣k′〉 ∣∣∣k′′〉+ c2

∣∣∣k′′〉 ∣∣∣k′〉)+
1
2

(
c1

∣∣∣k′′〉 ∣∣∣k′〉+ c2

∣∣∣k′〉 ∣∣∣k′′〉)
=
c1 + c2

2

(∣∣∣k′〉 ∣∣∣k′′〉+
∣∣∣k′′〉 ∣∣∣k′〉) (12)

Â12

(
c1

∣∣∣k′〉 ∣∣∣k′′〉+ c2

∣∣∣k′′〉 ∣∣∣k′〉) =
c1 − c2

2

(∣∣∣k′〉 ∣∣∣k′′〉− ∣∣∣k′′〉 ∣∣∣k′〉) (13)

Now, the question is, does nature take advantage of the totally symmetric/antisymmetric
states? It turns out that Bosons (particles with integer spin, 0,1,2, . . .) satisfy Bose-Einstein
statistics. That is

P̂ij |N -identical⟩ = + |N -identical⟩ (14)

The wave function must be completely symmetric. Hence, Bosonic states are eigenstates
of Ŝij . On the other hand, it is known that Fermions (particles with half-integer spin,
1
2 ,

3
2 , . . .) satisfy Fermi-Dirac statistics. Which is that

P̂ij |N -identical⟩ = −|N -identical⟩ (15)

The wave function must be antisymmetric with the exchange of any 2 particles! Hence,
they are eigenstates of Âij . Note that these results are also applicable to composite sys-
tems (recall total spin states)!

A fundamental consequence of the fact that Fermions are completely antisymmetric is
the Pauli Exclusion Principle. Note this is a result of Fermions being antisymmetric, not
the other way around.

Theorem 1 (Pauli Exclusion Principle). No two Fermions can occupy the same exact state.



IDENTICAL PARTICLES 3

Proof. We proceed with a proof by contradiction. Suppose that two Fermions were in the
same quantum state. That is

∣∣∣ψ〉 ∣∣∣ψ〉
. Then, Fermions are eigenstates of Â12 (it should act

like the identity). Therefore,

Â12

∣∣∣ψ〉 ∣∣∣ψ〉
=

1
2

(
1− P̂12

) ∣∣∣ψ〉 ∣∣∣ψ〉
= 0 (16)

So in fact, it is impossible! □

Lets consider further the difference between bosons and fermions. For a system of two
fermions, there is only one possibility for the state:

1
√

2

(∣∣∣k′〉 ∣∣∣k′′〉− ∣∣∣k′′〉 ∣∣∣k′〉) (17)

On the other hand, bosons can be in 3 possible states:∣∣∣k′〉 ∣∣∣k′〉 ,
∣∣∣k′′〉 ∣∣∣k′′〉 ,

1
√

2

(∣∣∣k′〉 ∣∣∣k′′〉+
∣∣∣k′′〉 ∣∣∣k′〉) (18)

This differs from the classical particles which have no restriction on symmetrc and can
be in any 4 independent states. Note the observation of bosons differing from fermions is
most dramatic at low temperature where it is possible for all bosons to energy the ground
state, and this is known as Bose-Einstein condensation, this feature is impossible for
fermions.

Lets return to our 2 electron system (ie 2 spin 1/2 particles). Furthermore, lets suppose
that

[
Ĥ,Ŝ 2

]
= 0 so that we can write our eigenfunctions of Ĥ as

Ψ (x1,x2) = φ(r1,r2)σ (ω1,ω2) (19)

Furthermore, they must also be eigenfunction of Ŝ 2, hence they can either be in the
triplet manifold

σ (ω1,ω2) =


α(ω1)α(ω2)
1√
2
(α(ω1)β(ω2) + β(ω1)α(ω2))

β(ω1)β(ω2)

(20)

or singlet manifold

σ (ω1,ω2) =
1
√

2
(α(ω1)β(ω2)− β(ω1)α(ω2)) (21)

Fermi-Dirac statistics requires that

φ(r1,r2)σ (ω1,ω2) = −φ(r2,r1)σ (ω2,ω1) (22)

Hence, the permutation operator P̂12 can be decomposed into

P̂12 = P̂
(space)
12 ⊗ P̂

(spin)
12 (23)

where P̂
(space)
12 only interchanges the position coordinate and P̂

(spin)
12 interchanges the

spin coordinate. This necessarily implies that either P̂
(space)
12 or P̂

(spin)
12 must be antisym-

metric for P̂12 to be antisymmetric. But both cannot be antisymmetric or both being
symmetric. If σ is a triple, then it must be that φ is antisymmetric. If σ is a singlet, then
φ must be symmetric!
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Now, lets suppose that our Hamiltonian commutes with the spin operators and is sep-
arable such that

Ĥ = ĥ(1) + ĥ(2) (24)

where
∣∣∣φA〉 , ∣∣∣φB〉 are two spatial eigenfunctions. Then we know the spatial portion of the

wave function must look something like

φ(r1,r2) =
1
√

2
(φA(r1)φB(r2)±φB(r1)φA(r2)) (25)

where the + combination goes with the spin singlet and − combination goes with the spin
triplet. Note that the − combination cannot have that A = B, but for the + combination,
A = B is allowed. All we need is for the spatial portion to be symmetric/antisymmetric
respectively.

Lets assume that in general A , B. We can then ask the question, what is the probability
of finding an electron near r1 and an electron near r2. Well, we have

P (r1,r2) =
∣∣∣φ∣∣∣2

=
1
2

(∣∣∣φA(r1)
∣∣∣2∣∣∣φB(r2)

∣∣∣2 +
∣∣∣φA(r2)

∣∣∣2∣∣∣φB(r1)
∣∣∣2 ±Re

(
φA(r1)φB(r2)φ∗A(r2)φ∗B(r1)

)) (26)

The cross term is called the exchange density. In the event that we had a spin triplet,
then there was a minus sign and P (r1 = r2) = 0. The electrons are hence avoiding each
other! However, for the spin singlet, P (r1 = r2) is actually enhanced (that is the exchange
density contributes)! We might be a bit worries since classically, we don’t see exchange
effects at all, they are purely a quantum phenomena. And in fact, we are fine since for
localized wave functions φA, φB that are fairly far from each other, then there overlap
is small and the exchange density is consequently small. Hence the exchange density is
only important when the spatial wave functions are relatively close or delocalized. More
precisely, we don’t have to worry about antisymmetrizing Fermions which are far apart
from each other, but in the case of molecules, we do.

Example 2 (The Helium Atom). Recall our example from earlier on the Helium atom. We
first assumed that we could ignore electron-electron interactions so that we could write
the ground-state wave function as

ψ(r1,r2) = ψ100(r1)ψ100(r2) (27)

We then found that we could include the electron-electron interaction by usingψ as a trial
wave function and variationally optimizing the Z parameter (effective nuclear charge) so
as to minimize the energy. We found Z0 = 2− 5

16 gave the optimal result.

ξ0(r1,r2,Z0) =
(
Z3

0

π

)
e−Z0(r1+r2) (28)

Ah, but we neglected basically everything we just talked about (namely indistinguishably
and spin!). Lets add spin into this formulation. We know the ground state of Helium
should have 2 electrons in the 1s orbital. And we can take ξ to be the spatial part of our
wave function which is symmetric with respect to exchange of the electron coordinates.
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Figure 2. Schematic of the energy level splitting in the excited state of Helium.

E100 + Enlm

J

K Singlet
K Triplet

Hence, we should multiply by an antisymmetric spin component (in this case, the singlet
spin) so that our final wave function is

Ψ (x1,x2) =
1
√

2
ξ0(r1,r2,Z0)(α(ω1)β(ω2)− β(ω1)α(ω2)) (29)

Note that by adding in spin, we have not changed the energy for the wave function, nor
have we altered the optimal value of Z0! This is because our Hamiltonian does not depend
on spin, and so spin can always be dealt with later!

Example 3 (Helium Atom Excited State). Lets also consider the excited states of Helium.
Lets consider one electron in the 1s orbital and the other in the nl orbital. In general, we
could write the energy for the state as

E = E100 + Enlm +∆E (30)

where the ∆E comes from the electron-electron interaction. The excited state singlet state
will have a symmetric spatial wave function and the triplet state will have an antisym-
metric spatial wave function. In first-order perturbation theory, we can evaluate ∆E as
the expectation value of e2/r12 so that 〈

e2

r12

〉
= J ±K (31)

where J and K are known as the Coulomb and exchange integrals respectively.

J =
∫ ∣∣∣ψ100(x1)

∣∣∣2∣∣∣ψnlm(x2)
∣∣∣2 e2

r12
(32)

K =
∫
ψ100(x1)ψ∗nlm(x1)ψ∗100(x2)ψnlm(x2)

e2

r12
(33)

The upper/lower signs go with the spin singlet/triplet respectively. Both J and K are
positive valued so it can be seen that the spin singlet is higher in energy than the cor-
responding spin triplet (Fig. 2). What is particularly interesting is that the Hamiltonian
commutes with spin, so there should not be any particular preference for singlet or triplet
spin states to have higher or lower energy. But this spin effect is due to the Fermi-Dirac
statistics of fermions!

2. Hartree Product and Slater Determinants

2.1. Spin and Spatial Molecular Orbitals. Lets return to our discussion on the elec-
tronic Hamiltonian. We know that it is in general non-separable due to the electron-
electron interactions. Lets, for the moment, neglect all of the electron-electron interaction
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terms such that the Hamiltonian for an N electron system is given by

Ĥ =
N∑
i

ĥ(i) (34)

where ĥ(i) is ith electron operator which consists of just the electron kinetic energy and
nuclear-electron interaction terms. Let suppose we knew what the exact eigenstate of the
individual ĥ(i) (and they should actually be all the same!), and enumerate them as

∣∣∣φp〉.
That is,

ĥ
∣∣∣φp〉 = εp

∣∣∣φp〉 (35)

In general, we won’t be able to exactly solve these one-electron operators, but we can use
the LCAO approach from earlier to get a set of approximate MOs generated from a basis
set of AOs.

We know that to properly describe an electron, however, is that we must also include
spin. Spin orbitals are formed by adding an appropriate α or β spin function.

χ(x) =
{
φ(r)α(ω)
φ(r)β(ω)

(36)

Given some set of K spatial orbitals, we can form a set of 2K spin orbitals as∣∣∣χpα〉 =
∣∣∣φp,α〉 (37a)∣∣∣χpβ〉 =
∣∣∣φp,β〉 (37b)

These spin orbitals are exactly single particle states (this is the translation from physics to
chemistry actually). We can then form a many-electron wave function through the direct
product of single particle wave functions. The simplest form is

|HP⟩ = |χP ⟩
∣∣∣χQ〉 . . . |χR⟩ (38)

A wave function of this form is called a Hartree product. The particles described by a
Hartree product are uncorrelated. That is the probability of finding one electron at some
point in space is independent of the position of the other electrons. But more importantly,
it does not take into account the indistinguishably of electrons. As such it violates the
antisymmetry principle and is not a good form for our many-electron wave function

More importantly, the set of all possible Hartree products is exactly the direct product
basis for the total Hilbert space describing the N electron wave function. Hence, our
actual electronic wave function must be some linear combination of the Hartree products!
However, in the next section we will consider an alternative basis which removes the issue
of antisymmetry and indistinguishably reducing the amount of redundant parameters.

2.2. Slater Determinant. One can correct the Hartree product by forming an antisym-
metrized Hartree product. As an example, lets take a 2 electron system were the electrons
occupy the spin orbitals |χP ⟩ ,

∣∣∣χQ〉. The Hartree product would be∣∣∣HP1,2
〉

= |χP ⟩
∣∣∣χQ〉 (39)
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But if we didn’t want to distinguish between which electron was in which orbital we could
have written ∣∣∣HP2,1

〉
=

∣∣∣χQ〉 |χP ⟩ (40)

Both do not take into consideration the antisymmetry principle. But if we take an appro-
priate linear combination

|Ψ ⟩ =
1
√

2

(
|χP ⟩

∣∣∣χQ〉− ∣∣∣χQ〉 |χP ⟩) (41)

We get a wave function which satisfies the antisymmetry principle (note the normaliza-
tion factor)! This can also be written as a determinant in spin coordinates as

Ψ (x1,x2) =
1
√

2

∣∣∣∣∣χP (x1) χQ(x1)
χP (x2) χQ(x2)

∣∣∣∣∣ (42)

This is called a Slater determinant. The generalization for an N -electron wave function is

Ψ (x1, . . . ,xN ) =
1
√
N !

∣∣∣∣∣∣∣∣∣∣∣
χP (x1) χQ(x1) . . . χR(x1)
χP (x2) χQ(x2) . . . χR(x2)
...

...
...

χP (xN ) χQ(xN ) . . . χR(xN )

∣∣∣∣∣∣∣∣∣∣∣ (43)

We will use the following as a short hand

|Ψ ⟩ =
∣∣∣χPχQ . . .χR〉 (44)

to represent the Slater determinant formed from the spin orbitals χP ,χQ, . . .χR.
Electrons which are described by a Slater determinant are no longer independent of

one another. The antisymmetrization of the Hartree product introduces exchange effects
(which have already seen). In particular the motion of electrons with different spins are
uncorrelated, but for electrons with the same spin, it is correlated.

We can now characterize two different types of Slater determinants/sets of spin or-
bitals.

Definition 4. If a Slater determinant is composed of spin orbitals where the alpha and
beta spin orbitals have the same spatial forms (such as in the form Eq. (37)), we call this
a restricted Slater determinant. If the alpha and beta spin orbitals differ in at least one
spatial component, then they form an unrestricted Slater determinant.


