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Our focus so far has been on computing the electronic energy of a molecule in the
absense of an external electric or magnetic field. However, there are far many other mol-
ecule properties which can be calculated beyond the energy at a given electronic structure
method. Typically, these properties are given by some response to an external stimuli. As
a quick example, the dipole moment is the response of the energy with respect to some
external field. There are a few properties which are not response properties (transition
moments), which determine absorption intensities.

In general, there are typically three methods by which molecular properties are com-
puted:

• Derivatives of the energy
• From perturbation theory
• Derivatives of expectation values (often called propagator methods)

Lets start with a general discussion.
Firstly, lets consider a static picture (no time-dependence anywhere). Assume there is

some perturbation P such that our energy can be expanded in a Taylor Series as

E (P) = E (0) +
∂E

∂P
·P+

1
2
PT · ∂

2E

∂P2 ·P+ . . . (1)

This will be our building blocks for properties which come from the derivative of the
energy (which is also an expectation value). As a specific example, the polarizability
tensor is the second derivative of the energy with respect to some external electric field
P = E.

α = −∂
2E

∂E2 (2)

The perturbation approach is similar to what we have seen in recovering dynamical
correlation. Collecting terms up to some order λn yields the nth order property. Recall
that the second-order term can be written as a sum of matrix elements over all excited
states as

E (2) = 2
∑
i,0

∣∣∣∣ 〈Φ (0)
∣∣∣P̂∣∣∣i(0)

〉∣∣∣∣2
E

(0)
0 −E

(0)
i

(3)

Again, the polarizability to some perturbing dipolar electric field (now P = r since electric
fields interact with the dipole operator), yields

α = −2
∑
i,0

∣∣∣∣ 〈Φ (0)
∣∣∣r̂∣∣∣i(0)

〉∣∣∣∣2
E

(0)
0 −E

(0)
i

(4)
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Note that because this requires a summation over all excited states, it is very inefficient for
ab initio methods. Instead, semi-empirical methods often employ this method to calculate
the molecular properties.

Finally, the propagator formulations expands the expectation value of an operator Ô in
terms of the perturbation P as

⟨Ψ |Ô |Ψ ⟩ = ⟨Ψ0|Ô |Ψ0⟩+
∂⟨Ψ |Ô |Ψ ⟩

∂P
·P+

1
2
PT · ∂

2 ⟨Ψ |Ô |Ψ ⟩
∂P2 ·P+ . . . (5)

Again, the molecular polarizability is given by the first-order change in the dipole mo-
ment as

α =
∂⟨Ψ |µ̂|Ψ ⟩

∂E
(6)

For dynamical perturbations, one has to use time-dependent perturbation theory. This
is a bit tougher to deal with, and can require a good amount of assumptions. We won’t
discuss these properties here.

1. Molecular Properties

1.1. External Electric Field. We have some electronic charge distribution ρ(r) and this
can interact with an electric potential φ(r) giving rise to an energy contribution of

E =
∫

ρ(r)φ(r)dr (7)

Recall that the electric field is given as the spatial derivative of the electric potential

E = −
∂φ(r)
∂r

(8)

Furthermore, on the scale of a molecule, an external electric field is typically uniform
over the entire molecule which allows us to expand the energy E in multipole expansion
as

E = qφ−µ ·E− 1
2
Q :

∂E
∂r
− . . . (9)

where q is the total electric charge, µ is the electric dipole moment, Q is the quadrupole
moment, etc. Note that the unperturbed dipole and quadrupole moments (in the absence
of an electric field), can be calculated as simple expectation values:

µ0 = −⟨Ψ |r̂|Ψ ⟩ (10)

Q0 = −⟨Ψ |r̂ · r̂T |Ψ ⟩ (11)

Note, that this is only valid when the wave function is fully-variational. In the event that
the wave function is not fully-variational, this is called the unrelaxed dipole moment and
quadrupole moment since the wave function has not been fully optimized. Often, though
it is sufficient, but electron correlation (for example in MP2) might be missed since the
dipole moment would be the same as in HF theory!

Note that when there is an external electric field present, this can lead to an induced
dipole, quadrupole, etc moments. The dipole moment can thus be expanded as

µ = µ0 +α ·E+
1
2
ET ·β ·E+ . . . (12)
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where we define µ0 to be the permanent dipole moment, α the dipole polarizability, and
β the first hyper-polarizability, etc.

Because of this, we can write our energy in the presence of an external electric field as

E = qφ−µ0 ·E−
1
2
Q :

∂E
∂r
− . . .− 1

2
ET ·α ·E− . . . (13)

Finally, our total electronic energy is expanded in a Taylor series around the homoge-
neous field E as

E (E) = E (0) +
∂E

∂E
·E+

1
2
ET · ∂

2E

∂E2 ·E+ . . . (14)

Recall that by definition, µ is given as −∂E
∂E . Taking the derivative of Eq. (14), we can write

that

µ = −∂E

∂E
− ∂2E

∂E2 ·E−
1
2
ET · ∂

3E

∂E3 ·E− . . . (15)

Comparing with the expression for the dipole moment, we can clearly see that

µ0 = −∂E

∂E
(16)

α = −∂
2E

∂E2 (17)

β = −∂
3E

∂E3 (18)

One can do similar expansions for the quadrupole moment and associated polarizabil-
ities as energy derivatives.

1.2. External Magnetic Field. Similarly to the external electric field, we can perform a
multipole expansion of the energy interacting with an external magnetic field as

E = −m0 ·B−
1
2
B ·ξ ·B− . . . (19)

Since the magnetic field is often much smaller than the electric field, we only need to
consider the dipole moment interaction (this amounts to ignoring the gradient of the
magnetic field terms).

Similarly, we can compute the dipole moment m0 for the unperturbed system using an
expectation value

m0 = −1
2
⟨Ψ |L̂G + geŜ|Ψ ⟩ (20)

L̂G =
(
r̂− R̂G

)
× p̂ (21)

where R̂G is the gauge origin and ge is a constant approximately equal to 2. Note that
it can be seen that for closed-shell system, the spin part will be zero. Furthermore, the
angular momentum component will also be zero for non-degenerate wave functions since
the L̂G is purely imaginary, whereas the wave function is typically real-valued. Hence, it
is very rare to find a permanent magnetic moment!
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Just like in the electric field case, in the presence of an external magnetic field, it is pos-
sible to induce a magnetic dipole moment. Further, the magnetizability, ξ is the equiv-
alent of the electric polarizability (note the macroscopic quantity is called the magnetic
susceptibility, χ). By a similar procedure in the electric field case, it can be seen that

m0 = −∂E

∂B
(22)

ξ = −∂
2E

∂B2 (23)

1.3. Nuclear Magnetic Moments. This time, we take our perturbation to be the nuclear
magnetic moment I which arises from the nuclear spin. Unlike in electrons where we
typically like to talk about orbital angular momentum and spin as different quantities,
for nuclei, we often talk of the total, intrinsic angular moment (recall that J quantities)
which we label as I. In general, protons and neutrons are Fermions; thus nuclei with an
odd mass number will have a half-integer spin; whereas an even mass number results
in an integer spin. It is only these specific isotopes with an odd number of protons and
neutrons for which the nuclei can have a non-zero spin and therefore generate a magnetic
field. For even number of protons and neutrons, the nuclei (in the ground state) will have
zero spin, and thus not produce a magnetic moment. This is why H-NMR is based off
of hydrogen with a single proton, and C-NMR is based on carbon-13 (odd number of
protons+neutrons).

In general, we can expand the energy like before as

E (I1,I2, . . .) = E (0) +
∂E

∂I1
· I1 +

∂E

∂I2
· I2 +

1
2
IT1 ·

∂2E

∂I1∂I2
· I2 + . . . (24)

Note that the first derivates vanish since there is nothing for them to interact with. On
the other hand, we define J12 = ∂2E

∂I1∂I2
which gives the NMR coupling constant J.

1.4. Electron Magnetic Moments. In non-relativistic quantum chemistry, our Hamil-
tonian does not depend on spin. However, electron spins can interact among each other
in so called spin-spin interactions. It makes sense however, that singlet states have no net
electron spin, and thus do not have any shift in energy. However, for doublet, triplet, etc,
we can model the energy shift as follows

E (s1,s2, . . .) = E (0) +
∂E

∂s1
· s1 +

∂E

∂s2
· s2 +

1
2
sT1 ·

∂2E

∂s1∂s2
· s2 + . . . (25)

However, again, the first derivative terms are zero since we require at least a pair of
electron spins. Thus,

E (s1,s2, . . .) = E (0) + sT1 ·D12 · s2 + . . . (26)

where D is the zero field splitting which lifts the degeneracy of the individual compo-
nents of a triplet (or higher multiplet).
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1.5. Mixed Derivatives. Mixed derivatives are just the cross terms if the energy is ex-
panded in more than one perturbation. Here are just a few.

The change in dipole moment with respect to geometry displacement along a normal
coordinate q is proportional to the IR absorption. Up to some constant,

IR intensity ∝
(
∂µ
∂q

)2

∝
(
∂2E

∂R∂E

)2

(27)

Of course, in order to calculate the intensities of overtone bands, as well as additional
contribution to the fundamental bands, one needs to include higher-order terms.

The intensity of a Raman band is given by the derivative of the polarizability with
respect to a normal coordinate:

Raman intensity ∝
(
∂α
∂q

)2

∝
(

∂3E

∂E2∂q

)2

(28)

Finally, the NMR shielding tensor σ is given by

NMR shielding ∝ ∂2E

∂B∂I
(29)

2. Analytic Derivatives

Our task now is to understand how to take these derivatives. That is, how does one
compute ∂E

∂E ? Fortunately, for variational methods, these derivatives will be more straight-
forward; whereas for non-variational methods, more work will have to be done to recover
the exact quantities. Lets first consider the basic issues:

In general, derivative techniques consider the energy is the presence of some pertur-
bation, take the analytical derivative of the energy n times to get the nth-order property,
and then let the perturbation strength go to zero. Our energy can be written therefore as

E (λ) = ⟨Ψ (λ)|Ĥ +λP̂1 +λ2P̂2|Ψ (λ)⟩ (30)

For the moment, let us suppose that we are considering a variational method such as
HF, MCSCF, etc; and we will deal with non-variational methods like MP2 and CC later.
Note that the perturbation terms are explicitly written, whereas the wave function de-
pends implicitly on the perturbation (through the explicit parameterization: orbitals and
CI coefficients).

If one writes down the first derivative with respect to λ,

∂E

∂λ
=

〈
∂Ψ
∂λ

∣∣∣∣∣Ĥ +λP̂1 +λ2P̂2

∣∣∣∣∣Ψ 〉
+ ⟨Ψ |P̂1 + 2λP̂2|Ψ ⟩+

〈
Ψ

∣∣∣∣∣Ĥ +λP̂1 +λ2P̂2

∣∣∣∣∣∂Ψ∂λ
〉

(31)

Now, lets have the perturbation strength go to zero (ie, λ→ 0), then

∂E

∂λ

∣∣∣∣∣
λ=0

= ⟨Ψ (0)|P̂1|Ψ (0)⟩+ 2
〈
∂Ψ
∂λ

∣∣∣∣∣Ĥ ∣∣∣∣∣Ψ (0)
〉

(32)

Again, the wave function depends on the perturbation implicitly through the variational
parameters (orbital coefficients, κ; CI vector, C) and AO basis functions (φµ). In general,
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though
∂Ψ
∂λ

=
∂Ψ
∂C

∂C
∂λ

+
∂Ψ
∂κ

∂κ
∂λ

+
∑
µ

∂Ψ
∂φµ

∂φµ

∂λ
(33)

Often times, the basis set is independent of the perturbation (though not in the case of
nuclear gradients since the basis functions are placed on the nuclei). Thus, we can write
that

∂E

∂λ

∣∣∣∣∣
λ=0

= ⟨Ψ (0)|P̂1|Ψ (0)⟩+ 2
∂C
∂λ

〈
∂Ψ
∂C

∣∣∣∣∣Ĥ ∣∣∣∣∣Ψ (0)
〉

+ 2
∂κ
∂λ

〈
∂Ψ
∂κ

∣∣∣∣∣Ĥ ∣∣∣∣∣Ψ (0)
〉

(34)

Now, only for variational methods, where the final wave function is variationally op-
timized with respect to all parameters, the last two terms are zero since the energy is
stationary with respect to the CI or MO coefficients! This is actually a variation of the
more general Hellmann-Feynman theorem (see the next section).

∂E

∂C
= 2

〈
dΨ
dC

∣∣∣∣∣Ĥ +λP̂1 +λ2P̂2

∣∣∣∣∣Ψ 〉
= 0 (35)

Thus, when λ = 0,
∂E

∂C

∣∣∣∣∣
λ=0

= 2
〈
∂Ψ
∂C

∣∣∣∣∣Ĥ ∣∣∣∣∣Ψ (0)
〉

= 0 (36)

Therefore, the final derivative is given as (again, only for variational wave functions)

∂E

∂λ

∣∣∣∣∣
λ=0

= ⟨Ψ (0)|P̂1|Ψ (0)⟩ (37)

2.1. Hellmann-Feynman Theorem.

Theorem 1 (Hellmann-Feynman). Suppose λ is some continuous parameter such that
the Hamiltonian depends on it Ĥ(λ). Let |Ψ (λ)⟩, E (λ) be a corresponding eigenstate and
eigenvalue. Then

dE

dλ
= ⟨Ψ (λ)|

dĤ
dλ
|Ψ (λ)⟩ (38)

There are various ways to prove this theorem, lets look at a more straightforward one:

Proof. Note that since |Ψ (λ)⟩ is an eigenstate of Ĥ(λ) always, and for any value of λ,
⟨Ψ (λ)|Ψ (λ)⟩ = 1, it follows that

d
dλ
⟨Ψ (λ)|Ψ (λ)⟩ = 0 (39)

Now, starting with the energy expression,

dE

dλ
=
〈

dΨ
dλ

∣∣∣∣∣Ĥ(λ)
∣∣∣∣∣Ψ (λ)

〉
+

〈
Ψ (λ)

∣∣∣∣∣Ĥ(λ)
∣∣∣∣∣dΨdλ

〉
+ ⟨Ψ (λ)|

dĤ
dλ
|Ψ (λ)⟩

=E (λ)
(〈

dΨ
dλ

∣∣∣∣∣Ψ (λ)
〉

+
〈
Ψ (λ)

∣∣∣∣∣dΨdλ

〉)
+ ⟨Ψ (λ)|

dĤ
dλ
|Ψ (λ)⟩

=E (λ)
d

dλ
⟨Ψ (λ)|Ψ (λ)⟩+ ⟨Ψ (λ)|

dĤ
dλ
|Ψ (λ)⟩

=⟨Ψ (λ)|
dĤ
dλ
|Ψ (λ)⟩

(40)
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□

The Hellmann-Feynman theorem actually can be a bit looser in its requirements for
|Ψ (λ)⟩ which is that it is a stationary point of the energy. However, eigenstates are sta-
tionary points and thus eigenstates automatically satisfy this condition. Variational wave
function are also stationary points of the energy with respect to the variational param-
eters, and thus also satisfy the condition. Non-variational wave functions do not, and
hence one typically would have to compute the response of the wave function parame-
ters to the external perturbation (which can be very costly).

2.2. Second Derivative of the Energy. The second derivative of the energy for a real-
valued wave function can be written as

1
2
∂2E

∂λ2 =
〈
∂2Ψ

∂λ2

∣∣∣∣∣∣Ĥ +λP̂1 +λ2P̂2

∣∣∣∣∣∣Ψ
〉

+ 2
〈
∂Ψ
∂λ

∣∣∣∣∣P̂1 + 2λP̂2

∣∣∣∣∣Ψ 〉
+

〈
∂Ψ
∂λ

∣∣∣∣∣Ĥ +λP̂1 +λ2P̂2

∣∣∣∣∣∂Ψ∂λ
〉

+ ⟨Ψ |P̂|Ψ ⟩
(41)

Again, letting the perturbation strength go to zero,

1
2
∂2E

∂λ2

∣∣∣∣∣∣
λ=0

=
〈
∂2Ψ

∂λ2

∣∣∣∣∣∣Ĥ
∣∣∣∣∣∣Ψ (0)

〉
+ 2

〈
∂Ψ
∂λ

∣∣∣∣∣P̂1

∣∣∣∣∣Ψ (0)
〉

+
〈
∂Ψ
∂λ

∣∣∣∣∣Ĥ ∣∣∣∣∣∂Ψ∂λ
〉

+ ⟨Ψ (0)|P̂2|Ψ (0)⟩ (42)

Now, lets suppose that only C are our only variational parameters (they could encompass
the MO coefficients as well, but we reduce it down to 1 symbol for simplicity), we can
write the derivative as

1
2
∂2E

∂λ2

∣∣∣∣∣∣
λ=0

=
∂2C
∂λ2

〈
∂Ψ
∂C

∣∣∣∣∣Ĥ ∣∣∣∣∣Ψ (0)
〉

+
(
∂C
∂λ

)2 〈
∂2Ψ

∂C2

∣∣∣∣∣∣Ĥ
∣∣∣∣∣∣Ψ (0)

〉
+ 2

∂C
∂λ

〈
∂Ψ
∂C

∣∣∣∣∣P̂1

∣∣∣∣∣Ψ (0)
〉

+
(
∂C
∂λ

)2 〈
∂Ψ
∂C

∣∣∣∣∣Ĥ ∣∣∣∣∣∂Ψ∂C
〉

+ ⟨Ψ (0)|P̂2|Ψ (0)⟩

(43)

Again, assuming we have a variational wave function, we see that the first term is zero.
The second, third, and fourth term sum to zero, which can be seen by calculating the
second derivative of Eq. (36) with respect to the perturbation,

∂
∂λ

〈
∂Ψ
∂C

∣∣∣∣∣Ĥ +λP̂1 +λ2P̂2

∣∣∣∣∣Ψ (0)
〉 ∣∣∣∣∣∣

λ=0

=
∂C
∂λ

〈
∂2Ψ

∂C2

∣∣∣∣∣∣Ĥ
∣∣∣∣∣∣Ψ (0)

〉
+

〈
∂Ψ
∂C

∣∣∣∣∣P̂1

∣∣∣∣∣Ψ (0)
〉

+
∂C
∂λ

〈
∂Ψ
∂C

∣∣∣∣∣Ĥ ∣∣∣∣∣∂Ψ∂C
〉

= 0

(44)

All of this allows us to simplify the second derivative to (again, only for variational
methods)

1
2
∂2E

∂λ2

∣∣∣∣∣∣
λ=0

= ⟨Ψ (0)|P̂2|Ψ (0)⟩+ ∂C
∂λ

〈
∂Ψ
∂C

∣∣∣∣∣P̂1

∣∣∣∣∣Ψ (0)
〉

(45)

or, written more compactly as

1
2
∂2E

∂λ2

∣∣∣∣∣∣
λ=0

= ⟨Ψ (0)|P̂2|Ψ (0)⟩+
〈
∂Ψ
∂λ

∣∣∣∣∣P̂1

∣∣∣∣∣Ψ (0)
〉

(46)
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What is evident is that even for variational methods, if we want the second derivative of
the energy, we must compute the response of the wave function! This is why quantities
such as Hessians are much more expensive to compute as compared to gradients.

2.3. Derivative Methods versus Perturbation Theory. Only for exact wave functions
do first or second order perturbation theory give identical quantities to the derivative
methods. In general though, they are different it is has been shown that these differences
can be quite significant. It is therefore favored (when ever possible) to compute these
properties using the derivative methods as they will give the correct value irregardless of
if the method is variational or not.


